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UNIT-4 

GRAPHS 
 

In this chapter, we turn our attention to a data structure – Graphs - that differs from all of 

the other in one major concept: each node may have multiple predecessors as well as 

multiple successors. 

Graphs are very useful structures. They can be used to solve complex routing problems, 

such as designing and routing airlines among the airports they serve. Similarly, they can be 

used to route messages over a computer network from one node to another. 

Basic Concepts: 

A graph is a collection of nodes, called vertices and a collection of segments called lines 

connecting pair of vertices. In other words a graph consists of two sets, a set of vertices and 

set of lines. 

Graphs may be either directed or undirected. 
 

 A directed graph or digraph is a graph in which each line has a direction (arrow 

head) to its successor. The line in a directed graph is known as arc. The flow along 

the arc between two vertices can follow only the in directed direction. 

 An undirected graph is a graph in which there is no direction (arrow head) on any of 

the lines, which are known as edges. The flow between two vertices can go in either 

direction. 
 

 

A path is a sequence of vertices in which each vertex is adjacent to the next one. 

For example: {A, B, C, E} is a one path and {A, B, E, F} is another. 

 

Two vertices in a graph are said to be adjacent vertices (or neighbors) if there is a path of 

length 1 connecting them. 

Consider the above diagrams 
 

In directed graph, B is adjacent to A, where as E is not adjacent to D; but D is adjacent to E. 



   
 

Page 2 of 27 
 

In undirected graph, E and D are adjacent, but D and F are not. 

A cycle is a path, it start with vertex and ends with same vertex. 

Example: 

 
 
 
 
 
 

 
A-B-C-A is a cycle 

 

A loop is a special case of cycle in which a single arc begins and ends with the same vertex. 

In a loop the end points of the line are the same. 

Two vertices are said to be connected if there is a path between them. A graph is said to be 

connected if, ignoring direction, there is a path from any vertex to any other vertex. 

A directed graph is strongly connected if there is a path from each vertex to every other 

vertex in the digraph. 

 

 
A directed graph is weakly connected if at least two vertices are connected (A connected 

undirected graph would always be strongly connected, so the concept is not normally used 

with undirected graphs) 
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A graph is a disjoint graph if it is not connected 
 

The degree of a vertex is the no/of lines incident to it 
 

The out - degree of a vertex in a digraph is the no. of arcs leaving the vertex 

The in - degree is the no. of arcs entering the vertex 

For example: for vertex B; degree = 3, in - degree = 1, out - degree = 2 
 

NOTE: A tree is a graph in which each vertex has only one predecessor; how ever a graph is 

not a tree. 

Operations on Graphs: 

There are six primitive graph operations that provide the basic modules needed to maintain 

a graph. They are 

1. Insert a vertex 

2. Delete a vertex 

3. Add an edge 

4. Delete an edge 

5. Find a vertex 

6. Traverse a graph 
 

 
Graph Storage Structure: 

To represent a graph, we need to store two sets. The first set represents the vertices of the 

graph and the second set represents the edges or arcs. The two most common structures 

used to store these sets are arrays and linked lists. Although the arrays offer some simplicity 

this is a major limitation. 

Adjacency Matrix: 
 

The adjacency matrix uses a vector (one – dimensional array) for the vertices and a matrix 

(two – dimensional array) to store the edges. If two vertices are adjacent – that is if there is 

no edge between them, intersect is set to 0. 
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If the graph is directed, the intersection in the adjacency matrix indicates the direction 
 

In the below diagram, there is an arc from sources vertex B to destination vertex C. In the 

adjacency matrix, this arc is seen as a 1 in the intersection from B (on the left) to C (on the 

top). Because there is no arc from C to B, however, the intersection from C to B is 0. 
 

 
NOTE: In adjacency matrix representation, we use a vector to store the vertices and a matrix 

to store the edges. 

In addition to the limitation that the size of graph must be know before the program starts, 

there is another serious limitation in the adjacency matrix: only one edge can be stored 

between any two vertices. Although this limitation does not prevent many graphs from 

using the matrix format, some network structures require multiple lines between vertices. 

Adjacency list: 
 

The adjacency list uses a two – dimensional ragged array to store the edges. An adjacency 

list is shown below. 
 

 

 
 

The vertex list is a singly linked list of vertices in the list. Depending on the application, it  

could also be implemented using doubly linked lists or circularly linked lists. The pointer at 

the left of the list links the vertex entries. The pointer at the right in the vertex is a head 

pointer to a linked list of edges from the vertex. Thus, in the non – directed graph on the left 

in above figure there is a path from vertex B to vertices A, C, and E. To find these edges in 
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the adjacency list, we start at B’s vertex list entry and traverse the linked list to A, then to C, 

and finally to E. 

NOTE: In the adjacency list, we use a linked list to store the vertices and a two – dimensional 

linked list to store the arcs. 

Traverse graph: 

There is always at least one application that requires that all vertices in a given graph be 

visited; as we traverse the graph, we set the visited flag to on to indicate that the data have 

been processed 

That is traversal of a graph means visiting each of its nodes exactly once. This is 

accomplished by visiting the nodes in a systematic manner 

There are two standard graph traversals: depth first and breadth first. Both use visited flag 
 

Depth – First Traversal: 
 

In the depth – first traversal, we process all of a vertex’s descendants before we move to an 

adjacent vertex. This concept is most easily seen when the graph is a tree 

In the below figure we show the tree pre – order traversal processing sequence, one of the 

standard depth – first traversals 

 

 
In a similar manner, the depth – first traversal of a graph starts by processing the first 

vertex; we select any vertex adjacent to the first vertex and process it. This continues until 

we found no adjacent entries 

This is similar to reaching a leaf in a tree. We require a stack to complete the traversal 

i.e. last – in – first – out (LIFO) order 
 
 

Let’s trace a depth – first traversal through the graph in below figure the numbering in the 

box next to a vertex indicates the processing order 
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Trace of the DFS: 
 

1. We begin by pushing the first vertex, into the stack 
 

2. We then loop, pop the stack and after processing the vertex, push all of the adjacent 

vertices into the stack 

3. When the stack is empty traversal is completed 
 

NOTE: In the depth  – first traversal, all of a node’s descendents are processed before 

moving to an adjacent node 

 

 
Consider the above graph, let node A be the starting vertex 

 

1. Begin with node A push onto stack 
 

2. While stack not equal to empty 

Pop A; state A is visited 

Push nodes adjacent to A to stack and make their state waiting 
 

3. Pop X; state B is visited 
 

Push nodes adjacent to X into stack 
 

4. Pop H; state H is visited 
 

Push nodes adjacent to H into stack already G is in waiting state, then push nodes E 

and P 

5. Pop P; state P is visited 
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Push nodes adjacent to P are H, G, E; H is already in visited state, G and E are in 

waiting state 

6. Pop E; state E is visited 
 

Push adjacent nodes, H is already visited, so push Y and M into the stack 
 

7. Pop Y; state Y is visited 
 

Push nodes adjacent to Y into stack, E is visited, M already in waiting state 
 

8. Pop M; state M is visited 
 

Push nodes adjacent to M, which is J 
 

9. Pop J; state J is visited 
 

No nodes are there to be process 
 

10. Pop G; state G is visited 

Now the stack is empty 

The depth – first order of the visited nodes are A X H P E Y M J G 

Breadth – First traversal: 

In the breadth – first traversal of a graph, we process all adjacent vertices of a vertex before 

going to the next level. We first saw the breadth – first traversal of a tree as shown in below 
 

 

This traversal starts at level 0 and then processes all the vertices in level 1 before going on 

to process the vertices in level 2. 

The breadth – first traversal of a graph follows the same concept, begin by picking a starting 

vertex A after processing it, process all of its adjacent vertices and continue this process 

until get no adjacent vertices 

The breadth – first traversal uses a queue rather than a stack. As we process each vertex, we 

place all of its adjacent vertices in the queue. Then to select the next vertex to be processed, 

we delete a vertex from the queue and process it. 
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Trace of the BFS: 
 

1. We begin by enqueuing vertex A in the queue 
 

2. We then loop, dequeuing the queue and processing the vertex from the front of 

the queue. After processing the vertex, we place all of its adjacent vertices into 

the queue. Thus in the above diagram we dequeue vertex X, process it, and then 

place vertices G and H in the queue. 

3. When the queue is empty, the traversal is complete. 
 

NOTE: In the breadth – first traversal, all adjacent vertices are processed before processing 

the descendents of a vertex. 

Let’s trace this logic through the graph in below figure: 
 
 

 

Algorithms: 

 
Depth – First Search: 

Policy: Don’t push nodes twice 

// non-recursive, preorder, depth-first search 

void dfs (Node v) { 

if (v == null) 

return; 

push(v); 

while (stack is not empty) { 

pop(v); 

if (v has not yet been visited) 

mark&visit(v); 

for (each w adjacent to v) 

if (w has not yet been visited && not yet stacked) 

push(w); 

} // while 

} // dfs 
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Breadth-First Search: 

 
// non-recursive, preorder, breadth-first search 

void bfs (Node v) { 

if (v == null) 

return; 

enqueue(v); 

while (queue is not empty) { 

dequeue(v); 

if (v has not yet been visited) 

mark&visit(v); 

for (each w adjacent to v) 

if (w has not yet been visited && has not been queued) 

enqueue(w); 

} // while 

} // bfs 
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SORTING 
 

Sorting is a technique to rearrange the elements of a list in ascending or descending order, 

which can be numerical, lexicographical, or any user-defined order. Sorting is a process 

through which the data is arranged in ascending or descending order. 

Sorting can be classified in two types; 
 

Internal Sorts:- This method uses only the primary memory during sorting process. All data 

items are held in main memory and no secondary memory is required this sorting process. If 

all the data that is to be sorted can be accommodated at a time in memory is called internal 

sorting. There is a limitation for internal sorts; they can only process relatively small lists due 

to memory constraints. 

There are 3 types of internal sorts. 
 

(i) SELECTION SORT :- Ex:- Selection sort algorithm, Heap Sort algorithm 
 

(ii) INSERTION SORT :- Ex:- Insertion sort algorithm, Shell Sort algorithm 
 

(iii) EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort algorithm 
 

External Sorts:- Sorting large amount of data requires external or secondary memory. This 

process uses external memory such as HDD, to store the data which is not fit into the main 

memory. So, primary memory holds the currently being sorted data only. All external sorts 

are based on process of merging. Different parts of data are sorted separately and merged 

together. Ex:- Merge Sort 

Quick Sort: 
 

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960‘s. It was one of the first 
most efficient sorting algorithms. It is an example of a class of algorithms that work by 
“divide and conquer” technique. 
The quick sort algorithm partitions the original array by rearranging it into two groups. The 
first group contains those elements less than some arbitrary chosen value taken from the 
set, and the second group contains those elements greater than or equal to the chosen 
value. The chosen value is known as the pivot element. Once the array rearranged in this 
way with respect to the pivot, the same partitioning procedure is recursively applied to each 
of the two subsets. When all the subsets have been partitioned and rearranged, the original 
array is sorted. 
The function partition () makes use of two pointers up and down which are moved toward 
each other in the following fashion: 
1. Repeatedly increase the pointer ‘up‘ until a*up+ >= pivot. 
2. Repeatedly decrease the pointer ‘down‘ until a*down+ <= pivot. 
3. If down > up, interchange a[down] with a[up] 
4. Repeat the steps 1, 2 and 3 till the ‘up‘pointer crosses the ‘down‘ pointer. If ‘up‘ pointer  
crosses ‘down‘ pointer, the position for pivot is found and place pivot element in ‘down‘ 
pointer position. 
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The program uses a recursive function quicksort(). The algorithm of quick sort function sorts 
all elements in an array ‘a‘ between positions ‘low‘ and ‘high‘. 

1. It terminates when the condition low >= high is satisfied. This condition will be 
satisfied only when the array is completely sorted. 

2. Here we choose the first element as the ‗pivot‘. So, pivot = x*low+. Now it calls the 
partition function to find the proper position j of the element x[low] i.e. pivot. Then 
we will have two sub-arrays x[low], x[low+1], . . . . . . x[j-1] and x[j+1], x[j+2], . . . 
x[high]. 

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], ................ x[j-1] 
between positions low and j-1 (where j is returned by the partition function). 

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high] between 
positions j+1 and high. 

The time complexity of quick sort algorithm is of O(n log n). 
 

Example: 
Select first element as the pivot element. Move ‘up‘pointer from left to right in search of 

an  element  larger  than  pivot.  Move  the ‘down‘pointer from  right  to  left  in search of  an 

element smaller than pivot. If such elements are found, the elements are swapped. 

This  process  continues  till  the  ‘up‘  pointer  crosses  the  ‘down‘  pointer.  If  ‘up‘  pointer 

crosses   ‘down‘   pointer,   the  position   for   pivot   is  found   and  interchange  pivot   and 

element at ‘down‘ position. 

Let us consider the following example with 13 elements to analyze quick sort: 

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks 

38 08 16 06 79 57 24 56 02 58 04 70 45  

pivot    up      dow 
n 

  swap up & 
down 

pivot    04      79    

pivot     up   dow 
n 

    swap up & 
down 

pivot     02   57      

pivot      dow 
n 

up      swap pivot 
& down 

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)  

pivot     do 
wn 

up       swap pivot 
& down 

(02 08 16 06 04) 24         

pivot, 
down up            swap pivot 

& down 

02 (08 16 06 04)          

 pivot up  down         swap up & 
down 

 pivot 04  16          

 pivot  down Up          

 (06 04) 08 (16)         swap pivot 
& down 

 pivot down up           
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 (04) 06           swap pivot 
& down 

 04             
 pivot,  
 down, 

up 
    16          

 pivot, 
 down, 

up 

(02 04 06 08 16 24) 38 
       

       (56 57 58 79 70 45)  

       pivot up    dow 
n 

swap up & 
down 

       pivot 45    57  

       pivot dow 
n 

up    swap pivot 
& down 

       (45) 56 (58 79 70 57)  

       45       

swap pivot 
& down 

       pivot, 
down, 
up 

      

         (58 
pivot 

79 
up 

70 57) 
dow 
n 

swap up & 
down 

          57  79  

          dow 
n 

up   

         (57) 58 (70 79) swap pivot 
& down 

         57 
pivot, 
down, 
up 

    

           (70 79)  

           pivot, 
down 

up swap pivot 
& down 

           7 
0 

  

            79 
pivot 

, 
dow 
n, up 

 

       (45 56 57 58 70 79)  

02 04 06 08 16 24 38 45 56 57 58 70 79  
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Algorithm 

 
Sorts the elements a[p],.......... ,a[q] which reside in the global array a[n] into ascending 
order. The a[n + 1] is considered to be defined and must be greater than all elements 

in a[n]; a[n + 1] = + ∝ 

 

quicksort (p, q) 
 

{ 
if ( p < q ) then 
{ 

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element 

call quicksort(p, j – 
1); call quicksort(j + 1 
, q); 

} 
} 

partition(a, m, p) 

{ 
v = a[m]; up = m; down = p; // a[m] is the partition element 

do 
{ 

repeat 
up = up + 1; 

until (a[up] > v); 
 

repeat 
down = down -- 

1; until (a[down] < v); 
if (up < down) then call interchange(a, 

up, down); } while (up > down); 

 

a[m] = a[down]; 

a[down] = v; 

return (down); 

} 
 

interchange(a, up, down) 

{ 
p = a[up]; 
a[up] = a[down]; 
a[down] = p; 

} 
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X 

x[1] 
65 x[ 3] 

x[ 2] 
45 60 

x[6] 
x[ 4] 40 x[ 5] 25 50 55 

[7] 

] 
30 He a p T re e 

Heap and Heap Sort: 
 

Heap is a data structure, which permits one to insert elements into a set and also to 
find the largest element efficiently. A data structure, which provides these two 
operations, is called a priority queue. 

 

Max and Min Heap data structures: 
 

A max heap is an almost complete binary tree such that the value of each node 
is greater than or equal to those in its children. 

 

 
A min heap is an almost complete binary tree such that the value of each node is 
less than or equal to those in its children. 

 

 
Representation of Heap Tree: 

 
Since heap is a complete binary tree, a heap tree can be efficiently represented using 
one dimensional array. This provides a very convenient way of figuring out where 
children belong to. 

 
• The root of the tree is in location 1. 

• The left child of an element stored at location i can be found in location 2*i. 

• The right child of an element stored at location i can be found in location 2*i+1. 

• The parent of an element stored at location i can be found at location floor(i/2). 

 
The elements of the array can be thought of as lying in a tree structure. A heap tree 
represented using a single array looks as follows: 

 

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] 

65 45 60 40 25 50 55 30 

 
 
 
 
 
 

x[ 8 

95 15 

85 45 45 25 

75 25 35 15 55 65 35 75 

55 65 Max heap 85 95 Min heap 
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Operations on heap tree: 

 
The major operations required to be performed on a heap tree: 

 
1. Insertion, 

2. Deletion and 

3. Merging. 

 
Insertion into a heap tree: 

 
This operation is used to insert a node into an existing heap tree satisfying the 
properties of heap tree. Using repeated insertions of data, starting from an empty 
heap tree, one can build up a heap tree. 

 
Let us consider the heap (max) tree. The principle of insertion is that, first we have to 
adjoin the data in the complete binary tree. Next, we have to compare it with the data 
in its parent; if the value is greater than that at parent then interchange the values. 
This will continue between two nodes on path from the newly inserted node to the 
root node till we get a parent whose value is greater than its child or we reached the 
root. 

 
For illustration, 35 is added as the right child of 80. Its value is compared with its 
parent‘s value, and to be a max heap, parent‘s value greater than child‘s value is 
satisfied, hence interchange as well as further comparisons are no more required. 

 
As another illustration, let us consider the case of insertion 90 into the resultant heap 
tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it requires 
interchange. Next, 90 is compared with 80, another interchange takes place. Now, our 
process stops here, as 90 is now in root node. The path on which these comparisons 
and interchanges have taken places are shown by dashed line. 

 
The algorithm Max_heap_insert to insert a data into a max heap tree is as follows: 

 

Max_heap_insert (a, n) 

{ 
//inserts the value in a[n] into the heap which is stored at a[1] to a[n- 
1] int i, n; 
i = n; 
item = a[n]; 
while ( (i > 1) and (a[ i/2 ] < item ) do 
{ 

 
 

} 
a[i] = 
item ; 
return 
true ; 

} 

a[i] = a[ i/2 ] ; // move the parent 
down i = i/2 ; 
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Example: 
 

Form a heap using the above algorithm for the data: 40, 80, 35, 90, 45, 50, 70. 

1. Insert 40: 
 

2. Insert 80: 

 
 

40 
 
 
 

 
3. Insert 35: 

 
 
 
 

 
4. 

 

 

 

 

 
4 

 
 
 
 

5. Insert 45: 
 

90 
 
 

80 35 
 
 

40 45 
 
 

6. Insert 50: 
 

90 
50 

80 35 80 50 

35 

40 45 50 40 45 35 

 

 
7. Insert 70: 

 

90 90 

70 

80 50 80 70 
 

50 
40 45 35 70 40 45 35 50 

80 40 80 

80 40 

80 

40 35 

Insert 90: 

90 

80 80 
90 

80 35 

40 35 

0 

90 40 

40 
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Deletion of a node from heap tree: 
Any node can be deleted from a heap tree. But from the application point of view, 
deleting the root node has some special importance. The principle of deletion is as 
follows: 

 
• Read the root node into a temporary storage say, ITEM. 

 

• Replace the root node by the last node in the heap tree. Then re-heap the 
tree as stated below: 
• Let newly modified root node be the current node. Compare its 

value with the value of its two child. Let X be the child whose value 
is the largest. Interchange the value of X with the value of the 
current node. 

• Make X as the current node. 
• Continue re-heap, if the current node is not an empty node. 

 

The algorithm for the above is as follows: 

 
delmax (a, n, x) 
// delete the maximum from the heap a[n] and store it in x 
{ 

if (n = 0) then 
{ 

write (―heap is 
empty‖); return 
false; 

} 
x = a[1]; a[1] = a[n]; 
adjust (a, 1, n- 
1); return 
true; 

} 

adjust (a, i, n) 
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to 
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. // 
{ 

j = 2 *i ; 
item = 
a[i] ; 
while (j < n) do 
{ 

if ((j < n) and (a (j) < a (j + 1)) then j j + 1; 
// compare left and right child and let j be the 

larger child if (item > a (j)) then break; 
// a position for item is found 

else a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * 
j; 

 

} 
a [ j / 2 ] = item; 

} 
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Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 26 
and this node with data 26 is removed from the tree. Next 26 at root node is compared 
with its two child 45 and 63. As 63 is greater, they are interchanged. 

Now, 26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are 
interchanged. Now, 26 appears as the leave node, hence re-heap is completed. 

 

De le t ing t he no de w it h data 99 Aft er De le t io n of no de w it h data 99 
 

Merging two heap trees: 
 

Consider two heap trees H1 and H2. Merging the tree H2 with H1 means to include all 
the node from H2 to H1. H2 may be min heap or max heap and the resultant tree will  
be min heap if H1 is min heap else it will be max heap. Merging operation consists of 
two steps: Continue steps 1 and 2 while H2 is not empty: 

 
1. Delete the root node, say x, from H2. Re-heap H2. 

2. Insert the node x into H1 satisfying the property of H1. 
 

 
96 

 

93 67 
 

80 92 13 19 
 

38 59 45 92 Resultant max heap after merging H1 and H2 

Application of heap tree: 
They are two main applications of heap trees known are: 

 
1. Sorting (Heap sort) and Priority queue implementation 

26 63 

99 

26 57 63 

45 
45 57 

26 

35 29 57 42 
35 29 26 42 

27 12 24 26 
27 12 24 

92 13 

59 67 19 80 

38 45 92 93 96 

H1:maxheap H2: min heap 

+ 
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HEAP SORT: 
A heap sort algorithm works by first organizing the data to be sorted into a special 
type of binary tree called a heap. Any kind of data can be sorted either in ascending 
order or in descending order using heap tree. It does this with the following steps: 

 
1. Build a heap tree with the given set of data. 

2. a. Remove the top most item (the largest) and replace it with the last 

element in the heap. 

b. Re-heapify the complete binary tree. 

c. Place the deleted node in the output. 

3. Continue step 2 until the heap tree is empty. 
 

Algorithm: 
This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non- 
decreasing order. First transform the elements into a heap. 

 
heapsort(a, n) 
{ 

heapify(a, n); 
for i = n to 2 by – 1 do 
{ 

temp = 
a[i]; a[i] 

= a[1]; 

a[1]  = 

temp; 

adjust (a, 1, i – 1); 
} 

} 

heapify (a, n) 
//Readjust the elements in a[n] to form a heap. 
{ 

for i n/2 to 1 by – 1 do adjust (a, i, n); 
} 

 

adjust (a, i, n) 
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to 
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. // 
{ 

j = 2 *i ; 
item = 
a[i] ; 
while (j < n) do 
{ 

if ((j < n) and (a (j) < a (j + 1)) then j j + 1; 
// compare left and right child and let j be the 

larger child if (item > a (j)) then break; 
// a position for item is found 

else a[ j / 2 ] = a[j] // move the larger child up a level j = 2 * 
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j; 

 

} 
a [ j / 2 ] = item; 

} 

Time Complexity: 
 

Each ‗n‘ insertion operations takes O(log k), where ‘k‘ is the number of elements in the 
heap at the time. Likewise, each of the ‘n‘ remove operations also runs in time O(log 
k), where ‘k‘ is the number of elements in the heap at the time. 

 
Since we always have k ≤ n, each such operation runs in O(log n) time in the worst 
case. 

 
Thus, for ‘n‘ elements it takes O(n log n) time, so the priority queue sorting algorithm 
runs in O(n log n) time when we use a heap to implement the priority queue. 

 

Example 1: 
 

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data 
using heap sort. 

 

Solution: 
 

First form a heap tree from the given set of data and then sort by repeated deletion op: 
 

40 40 

80 35 80 70 

90 45 50 70 90 45 50 35 

90 
40 

40 70 
90 70 

80 45 50 35 
80 45 50 35 

90 

80 70 

40 45 50 35 
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Program for Heap Sort: 
void adjust(int i, int n, int a[]) 
{ 

int j, item; 
j= 2 * i; 
item = a[i]; 
while(j <= n) 
{ 

if((j < n) && (a[j] < a[j+1])) 
j++; 

if(item >= a[j]) break; 
else 
{ 

a[j/2] = a[j]; 
j = 2*j; 

} 
} 

a[j/2] = item; 
} 
void heapify(int n, int a[]) 
{ 

int i; 
for(i = n/2; i > 0; i--) 

adjust(i, n, a); 
} 
void heapsort(int n,int a[]) 
{ 

int temp, i; 
heapify(n, a); 
for(i = n; i > 0; i--) 
{ 

 
 
 
 

} 
} 

void main() 
{ 

temp = a[i]; 
a[i] = a[1]; 
a[1] = temp; 
adjust(1, i - 1, a); 

int i, n, a[20]; 
printf("\n How many element you want: "); 
scanf("%d", &n); 
printf("Enter %d elements: ", n); 
for (i=1; i<=n; i++) 

scanf("%d", &a[i]); 
heapsort(n, a); 
printf("\n The sorted elements are: \n"); 
for (i=1; i<=n; i++) 

printf("%5d", a[i]); 
} 
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Merge Sort: 
 

Merge sort is based on Divide and conquer method. It takes the list to be sorted and divide it  
in half to create two unsorted lists. The two unsorted lists are then sorted and merged to get 
a sorted list. The two unsorted lists are sorted by continually calling the merge-sort 
algorithm; we eventually get a list of size 1 which is already sorted. The two lists of size 1 are 
then merged. 

Merge Sort Procedure: 

This is a divide and conquer algorithm. This works as follows : 
 

1. Divide the input which we have to sort into two parts in the middle. Call it the left 
part and rightpart. 

2. Sort each of them separately. Note that here sort does not mean to sort it using some 
other method. We use the same function recursively. 

3. Then merge the two sorted parts. 

Input the total number of elements that are there in an array (number_of_elements). Input 
the array (array[number_of_elements]). Then call the function MergeSort() to sort the input 
array. MergeSort() function sorts the array in the range [left,right] i.e. from index left to 
index right inclusive. Merge() function merges the two sorted parts. Sorted parts will be from 
[left, mid] and [mid+1, right]. After merging output the sorted array. 

MergeSort() function: 

It takes the array, left-most and right-most index of the array to be sorted as arguments. 
Middle index (mid) of the array is calculated as (left + right)/2. Check if (left<right) cause we 
have to sort only when left<right because when left=right it is anyhow sorted. Sort the left  
part by calling MergeSort() function again over the left part MergeSort(array,left,mid) and 
the right part by recursive call of MergeSort function as MergeSort(array,mid + 1, right). 
Lastly merge the two arrays using the Merge function. 

Step-by-step example: 
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Program: 

#include <stdio.h> 
#define max 10 
int a[11] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44, 0 }; 
int b[10]; 
void merging(int low, int mid, int high) 
{ 

int l1, l2, i; 
for(l1 = low, l2 = mid + 1, i = low; l1 <= mid && l2 <= high; i++) 
{ 

if(a[l1] <= a[l2]) 
b[i] = a[l1++]; 

else 
 

} 

 
b[i] = a[l2++]; 

while(l1 <= mid) 
b[i++] = a[l1++]; 

while(l2 <= high) 
b[i++] = a[l2++]; 

for(i = low; i <= high; i++) 
a[i] = b[i]; 

} 
void sort(int low, int high) 
{ 

int mid; 
if(low < high) 

{ 
 
 
 
 

} 
else 
{ 

 
} 

} 

mid = (low + high) / 2; 
sort(low, mid); 
sort(mid+1, high); 
merging(low, mid, high); 

 
 
 

return; 

int main() 
{ 

int i; 
printf("List before sorting\n"); 
for(i = 0; i <= max; i++) 

printf("%d ", a[i]); 
sort(0, max); 
printf("\nList after sorting\n"); 
for(i = 0; i <= max; i++) 

printf("%d ", a[i]); 
} 
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External Sorting 
 

All the internal sorting algorithms require that the input fit into main memory. There are, 

however, applications where the input is much too large to fit into memory. For those 

external sorting algorithms, which are designed to handle very large inputs. 
 

Why We Need New Algorithms 

 
Most of the internal sorting algorithms take advantage of the fact that memory is directly 

addressable. Shell sort compares elements a[i] and a[i - hk] in one time unit. Heap sort 

compares elements a[i] and a[i * 2] in one time unit. Quicksort, with median-of-three 

partitioning, requires comparing a[left], a[center], and a[right] in a constant number of time 

units. If the input is on a tape, then all these operations lose their efficiency, since elements 

on a tape can only be accessed sequentially. Even if the data is on a disk, there is still a 

practical loss of efficiency because of the delay required to spin the disk and move the disk 

head. 

The time it takes to sort the input is certain to be insignificant compared to the time to read 

the input, even though sorting is an O(n log n) operation and reading the input is only O(n). 

 
 

Model for External Sorting 

The wide variety of mass storage devices makes external sorting much more device 

dependent than internal sorting. The algorithms that we will consider work on tapes, which 

are probably the most restrictive storage medium. Since access to an element on tape is  

done by winding the tape to the correct location, tapes can be efficiently accessed only in 

sequential order (in either direction). 

 
We will assume that we have at least three tape drives to perform the sorting. We need two 

drives to do an efficient sort; the third drive simplifies matters. If only one tape drive is  

present, then we are in trouble: any algorithm will require O(n2) tape accesses. 

The Simple Algorithm 

The basic external sorting algorithm uses the merge routine from merge sort. Suppose we 

have four tapes, Ta1, Ta2, Tb1, Tb2, which are two input and two output tapes. Depending 

on the point in the algorithm, the a and b tapes are either input tapes or output tapes. 

 
Suppose the data is initially on Ta1. Suppose further that the internal memory can hold (and 

sort) m records at a time. A natural first step is to read m records at a time from the input 

tape, sort the records internally, and then write the sorted records alternately to Tb1 and 

Tb2. We will call each set of sorted records a run. When this is done, we rewind all the tapes. 

Phase1: Divide the file into blocks of size m and sorting of blocks, store on output tapes. 

Phase2: Merging of Runs 
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Consider the example: 

 

If m = 3, then after the runs are constructed, the tapes will contain the data 

indicated in the following figure. 
 

 

Now Tb1 and Tb2 contain a group of runs. We take the first run from each tape and 

merge them, writing the result, which is a run twice as long, onto Ta1. Then we take the 

next run from each tape, merge these, and write the result to Ta2. We continue this 

process, alternating between Ta1 and Ta2, until either Tb1 or Tb2 is empty. At this point 

either both are empty or there is one run left. In the latter case, we copy this run to the 

appropriate tape. We rewind all four tapes, and repeat the same steps, this time using the 

a tapes as input and the b tapes as output. This will give runs of 4m. We continue the 

process until we get one run of length n. 

 
This algorithm will require log(n/m) passes, plus the initial run-constructing pass. 

For instance, if we have 10 million records of 128 bytes each, and four megabytes of 

internal memory, then the first pass will create 320 runs. We would then need nine more 

passes to complete the sort. Our example requires log 13/3 = 3 more passes, which are 

shown in the following figure. 
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Multiway Merge 

 
If we have extra tapes, then we can expect to reduce the number of passes required 

to sort our input. We do this by extending the basic (two-way) merge to a k-way merge. 

 
Merging two runs is done by winding each input tape to the beginning of each run. 

Then the smaller element is found, placed on an output tape, and the appropriate input 

tape is advanced. If there are k input tapes, this strategy works the same way, the only 

difference being that it is slightly more complicated to find the smallest of the k elements. 

We can find the smallest of these elements by using a priority queue. To obtain the next 

element to write on the output tape, we perform a delete_min operation. The 

appropriate input tape is advanced, and if the run on the input tape is not yet completed, 

we insert the new element into the priority queue. Using the same example as before, we 

distribute the input onto the three tapes. 
 

 
 

We then need two more passes of three-way merging to complete the sort. 
 

 

 
 
 

After the initial run construction phase, the number of passes required using k-way 

merging is logk(n/m) , because the runs get k times as large in each pass. For the example 

above, the formula is verified, since log3 13/3 = 2. If we have 10 tapes, then k = 5, and our 

large example from the previous section would require log5 320 = 4 passes. 
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