

Page 1 of 27

UNIT-4

GRAPHS

In this chapter, we turn our attention to a data structure – Graphs - that differs from all of

the other in one major concept: each node may have multiple predecessors as well as

multiple successors.

Graphs are very useful structures. They can be used to solve complex routing problems,

such as designing and routing airlines among the airports they serve. Similarly, they can be

used to route messages over a computer network from one node to another.

Basic Concepts:

A graph is a collection of nodes, called vertices and a collection of segments called lines

connecting pair of vertices. In other words a graph consists of two sets, a set of vertices and

set of lines.

Graphs may be either directed or undirected.

 A directed graph or digraph is a graph in which each line has a direction (arrow

head) to its successor. The line in a directed graph is known as arc. The flow along

the arc between two vertices can follow only the in directed direction.

 An undirected graph is a graph in which there is no direction (arrow head) on any of

the lines, which are known as edges. The flow between two vertices can go in either

direction.

A path is a sequence of vertices in which each vertex is adjacent to the next one.

For example: {A, B, C, E} is a one path and {A, B, E, F} is another.

Two vertices in a graph are said to be adjacent vertices (or neighbors) if there is a path of

length 1 connecting them.

Consider the above diagrams

In directed graph, B is adjacent to A, where as E is not adjacent to D; but D is adjacent to E.

Page 2 of 27

In undirected graph, E and D are adjacent, but D and F are not.

A cycle is a path, it start with vertex and ends with same vertex.

Example:

A-B-C-A is a cycle

A loop is a special case of cycle in which a single arc begins and ends with the same vertex.

In a loop the end points of the line are the same.

Two vertices are said to be connected if there is a path between them. A graph is said to be

connected if, ignoring direction, there is a path from any vertex to any other vertex.

A directed graph is strongly connected if there is a path from each vertex to every other

vertex in the digraph.

A directed graph is weakly connected if at least two vertices are connected (A connected

undirected graph would always be strongly connected, so the concept is not normally used

with undirected graphs)

Page 3 of 27

A graph is a disjoint graph if it is not connected

The degree of a vertex is the no/of lines incident to it

The out - degree of a vertex in a digraph is the no. of arcs leaving the vertex

The in - degree is the no. of arcs entering the vertex

For example: for vertex B; degree = 3, in - degree = 1, out - degree = 2

NOTE: A tree is a graph in which each vertex has only one predecessor; how ever a graph is

not a tree.

Operations on Graphs:

There are six primitive graph operations that provide the basic modules needed to maintain

a graph. They are

1. Insert a vertex

2. Delete a vertex

3. Add an edge

4. Delete an edge

5. Find a vertex

6. Traverse a graph

Graph Storage Structure:

To represent a graph, we need to store two sets. The first set represents the vertices of the

graph and the second set represents the edges or arcs. The two most common structures

used to store these sets are arrays and linked lists. Although the arrays offer some simplicity

this is a major limitation.

Adjacency Matrix:

The adjacency matrix uses a vector (one – dimensional array) for the vertices and a matrix

(two – dimensional array) to store the edges. If two vertices are adjacent – that is if there is

no edge between them, intersect is set to 0.

Page 4 of 27

If the graph is directed, the intersection in the adjacency matrix indicates the direction

In the below diagram, there is an arc from sources vertex B to destination vertex C. In the

adjacency matrix, this arc is seen as a 1 in the intersection from B (on the left) to C (on the

top). Because there is no arc from C to B, however, the intersection from C to B is 0.

NOTE: In adjacency matrix representation, we use a vector to store the vertices and a matrix

to store the edges.

In addition to the limitation that the size of graph must be know before the program starts,

there is another serious limitation in the adjacency matrix: only one edge can be stored

between any two vertices. Although this limitation does not prevent many graphs from

using the matrix format, some network structures require multiple lines between vertices.

Adjacency list:

The adjacency list uses a two – dimensional ragged array to store the edges. An adjacency

list is shown below.

The vertex list is a singly linked list of vertices in the list. Depending on the application, it

could also be implemented using doubly linked lists or circularly linked lists. The pointer at

the left of the list links the vertex entries. The pointer at the right in the vertex is a head

pointer to a linked list of edges from the vertex. Thus, in the non – directed graph on the left

in above figure there is a path from vertex B to vertices A, C, and E. To find these edges in

Page 5 of 27

the adjacency list, we start at B’s vertex list entry and traverse the linked list to A, then to C,

and finally to E.

NOTE: In the adjacency list, we use a linked list to store the vertices and a two – dimensional

linked list to store the arcs.

Traverse graph:

There is always at least one application that requires that all vertices in a given graph be

visited; as we traverse the graph, we set the visited flag to on to indicate that the data have

been processed

That is traversal of a graph means visiting each of its nodes exactly once. This is

accomplished by visiting the nodes in a systematic manner

There are two standard graph traversals: depth first and breadth first. Both use visited flag

Depth – First Traversal:

In the depth – first traversal, we process all of a vertex’s descendants before we move to an

adjacent vertex. This concept is most easily seen when the graph is a tree

In the below figure we show the tree pre – order traversal processing sequence, one of the

standard depth – first traversals

In a similar manner, the depth – first traversal of a graph starts by processing the first

vertex; we select any vertex adjacent to the first vertex and process it. This continues until

we found no adjacent entries

This is similar to reaching a leaf in a tree. We require a stack to complete the traversal

i.e. last – in – first – out (LIFO) order

Let’s trace a depth – first traversal through the graph in below figure the numbering in the

box next to a vertex indicates the processing order

Page 6 of 27

Trace of the DFS:

1. We begin by pushing the first vertex, into the stack

2. We then loop, pop the stack and after processing the vertex, push all of the adjacent

vertices into the stack

3. When the stack is empty traversal is completed

NOTE: In the depth – first traversal, all of a node’s descendents are processed before

moving to an adjacent node

Consider the above graph, let node A be the starting vertex

1. Begin with node A push onto stack

2. While stack not equal to empty

Pop A; state A is visited

Push nodes adjacent to A to stack and make their state waiting

3. Pop X; state B is visited

Push nodes adjacent to X into stack

4. Pop H; state H is visited

Push nodes adjacent to H into stack already G is in waiting state, then push nodes E

and P

5. Pop P; state P is visited

Page 7 of 27

Push nodes adjacent to P are H, G, E; H is already in visited state, G and E are in

waiting state

6. Pop E; state E is visited

Push adjacent nodes, H is already visited, so push Y and M into the stack

7. Pop Y; state Y is visited

Push nodes adjacent to Y into stack, E is visited, M already in waiting state

8. Pop M; state M is visited

Push nodes adjacent to M, which is J

9. Pop J; state J is visited

No nodes are there to be process

10. Pop G; state G is visited

Now the stack is empty

The depth – first order of the visited nodes are A X H P E Y M J G

Breadth – First traversal:

In the breadth – first traversal of a graph, we process all adjacent vertices of a vertex before

going to the next level. We first saw the breadth – first traversal of a tree as shown in below

This traversal starts at level 0 and then processes all the vertices in level 1 before going on

to process the vertices in level 2.

The breadth – first traversal of a graph follows the same concept, begin by picking a starting

vertex A after processing it, process all of its adjacent vertices and continue this process

until get no adjacent vertices

The breadth – first traversal uses a queue rather than a stack. As we process each vertex, we

place all of its adjacent vertices in the queue. Then to select the next vertex to be processed,

we delete a vertex from the queue and process it.

Page 8 of 27

Trace of the BFS:

1. We begin by enqueuing vertex A in the queue

2. We then loop, dequeuing the queue and processing the vertex from the front of

the queue. After processing the vertex, we place all of its adjacent vertices into

the queue. Thus in the above diagram we dequeue vertex X, process it, and then

place vertices G and H in the queue.

3. When the queue is empty, the traversal is complete.

NOTE: In the breadth – first traversal, all adjacent vertices are processed before processing

the descendents of a vertex.

Let’s trace this logic through the graph in below figure:

Algorithms:

Depth – First Search:

Policy: Don’t push nodes twice

// non-recursive, preorder, depth-first search

void dfs (Node v) {

if (v == null)

return;

push(v);

while (stack is not empty) {

pop(v);

if (v has not yet been visited)

mark&visit(v);

for (each w adjacent to v)

if (w has not yet been visited && not yet stacked)

push(w);

} // while

} // dfs

Page 9 of 27

Breadth-First Search:

// non-recursive, preorder, breadth-first search

void bfs (Node v) {

if (v == null)

return;

enqueue(v);

while (queue is not empty) {

dequeue(v);

if (v has not yet been visited)

mark&visit(v);

for (each w adjacent to v)

if (w has not yet been visited && has not been queued)

enqueue(w);

} // while

} // bfs

Page 10 of 27

SORTING

Sorting is a technique to rearrange the elements of a list in ascending or descending order,

which can be numerical, lexicographical, or any user-defined order. Sorting is a process

through which the data is arranged in ascending or descending order.

Sorting can be classified in two types;

Internal Sorts:- This method uses only the primary memory during sorting process. All data

items are held in main memory and no secondary memory is required this sorting process. If

all the data that is to be sorted can be accommodated at a time in memory is called internal

sorting. There is a limitation for internal sorts; they can only process relatively small lists due

to memory constraints.

There are 3 types of internal sorts.

(i) SELECTION SORT :- Ex:- Selection sort algorithm, Heap Sort algorithm

(ii) INSERTION SORT :- Ex:- Insertion sort algorithm, Shell Sort algorithm

(iii) EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort algorithm

External Sorts:- Sorting large amount of data requires external or secondary memory. This

process uses external memory such as HDD, to store the data which is not fit into the main

memory. So, primary memory holds the currently being sorted data only. All external sorts

are based on process of merging. Different parts of data are sorted separately and merged

together. Ex:- Merge Sort

Quick Sort:

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960‘s. It was one of the first
most efficient sorting algorithms. It is an example of a class of algorithms that work by
“divide and conquer” technique.
The quick sort algorithm partitions the original array by rearranging it into two groups. The
first group contains those elements less than some arbitrary chosen value taken from the
set, and the second group contains those elements greater than or equal to the chosen
value. The chosen value is known as the pivot element. Once the array rearranged in this
way with respect to the pivot, the same partitioning procedure is recursively applied to each
of the two subsets. When all the subsets have been partitioned and rearranged, the original
array is sorted.
The function partition () makes use of two pointers up and down which are moved toward
each other in the following fashion:
1. Repeatedly increase the pointer ‘up‘ until a*up+ >= pivot.
2. Repeatedly decrease the pointer ‘down‘ until a*down+ <= pivot.
3. If down > up, interchange a[down] with a[up]
4. Repeat the steps 1, 2 and 3 till the ‘up‘pointer crosses the ‘down‘ pointer. If ‘up‘ pointer
crosses ‘down‘ pointer, the position for pivot is found and place pivot element in ‘down‘
pointer position.

Page 11 of 27

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts
all elements in an array ‘a‘ between positions ‘low‘ and ‘high‘.

1. It terminates when the condition low >= high is satisfied. This condition will be
satisfied only when the array is completely sorted.

2. Here we choose the first element as the ‗pivot‘. So, pivot = x*low+. Now it calls the
partition function to find the proper position j of the element x[low] i.e. pivot. Then
we will have two sub-arrays x[low], x[low+1], x[j-1] and x[j+1], x[j+2], . . .
x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], x[j-1]
between positions low and j-1 (where j is returned by the partition function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . x[high] between
positions j+1 and high.

The time complexity of quick sort algorithm is of O(n log n).

Example:
Select first element as the pivot element. Move ‘up‘pointer from left to right in search of

an element larger than pivot. Move the ‘down‘pointer from right to left in search of an

element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the ‘up‘ pointer crosses the ‘down‘ pointer. If ‘up‘ pointer

crosses ‘down‘ pointer, the position for pivot is found and interchange pivot and

element at ‘down‘ position.

Let us consider the following example with 13 elements to analyze quick sort:

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot up dow
n

 swap up &
down

pivot 04 79

pivot up dow
n

 swap up &
down

pivot 02 57

pivot dow
n

up swap pivot
& down

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)

pivot do
wn

up swap pivot
& down

(02 08 16 06 04) 24

pivot,
down up swap pivot

& down

02 (08 16 06 04)

 pivot up down swap up &
down

 pivot 04 16

 pivot down Up

 (06 04) 08 (16) swap pivot
& down

 pivot down up

Page 12 of 27

 (04) 06 swap pivot
& down

 04
 pivot,
 down,

up
 16

 pivot,
 down,

up

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

 pivot up dow
n

swap up &
down

 pivot 45 57

 pivot dow
n

up swap pivot
& down

 (45) 56 (58 79 70 57)

 45

swap pivot
& down

 pivot,
down,
up

 (58
pivot

79
up

70 57)
dow
n

swap up &
down

 57 79

 dow
n

up

 (57) 58 (70 79) swap pivot
& down

 57
pivot,
down,
up

 (70 79)

 pivot,
down

up swap pivot
& down

 7
0

 79
pivot

,
dow
n, up

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Page 13 of 27

Algorithm

Sorts the elements a[p],.......... ,a[q] which reside in the global array a[n] into ascending
order. The a[n + 1] is considered to be defined and must be greater than all elements

in a[n]; a[n + 1] = + ∝

quicksort (p, q)

{
if (p < q) then
{

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element

call quicksort(p, j –
1); call quicksort(j + 1
, q);

}
}

partition(a, m, p)

{
v = a[m]; up = m; down = p; // a[m] is the partition element

do
{

repeat
up = up + 1;

until (a[up] > v);

repeat
down = down --

1; until (a[down] < v);
if (up < down) then call interchange(a,

up, down); } while (up > down);

a[m] = a[down];

a[down] = v;

return (down);

}

interchange(a, up, down)

{
p = a[up];
a[up] = a[down];
a[down] = p;

}

Page 14 of 27

X

x[1]
65 x[3]

x[2]
45 60

x[6]
x[4] 40 x[5] 25 50 55

[7]

]
30 He a p T re e

Heap and Heap Sort:

Heap is a data structure, which permits one to insert elements into a set and also to
find the largest element efficiently. A data structure, which provides these two
operations, is called a priority queue.

Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node
is greater than or equal to those in its children.

A min heap is an almost complete binary tree such that the value of each node is
less than or equal to those in its children.

Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using
one dimensional array. This provides a very convenient way of figuring out where
children belong to.

• The root of the tree is in location 1.

• The left child of an element stored at location i can be found in location 2*i.

• The right child of an element stored at location i can be found in location 2*i+1.

• The parent of an element stored at location i can be found at location floor(i/2).

The elements of the array can be thought of as lying in a tree structure. A heap tree
represented using a single array looks as follows:

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]

65 45 60 40 25 50 55 30

x[8

95 15

85 45 45 25

75 25 35 15 55 65 35 75

55 65 Max heap 85 95 Min heap

Page 15 of 27

Operations on heap tree:

The major operations required to be performed on a heap tree:

1. Insertion,

2. Deletion and

3. Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the
properties of heap tree. Using repeated insertions of data, starting from an empty
heap tree, one can build up a heap tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have to
adjoin the data in the complete binary tree. Next, we have to compare it with the data
in its parent; if the value is greater than that at parent then interchange the values.
This will continue between two nodes on path from the newly inserted node to the
root node till we get a parent whose value is greater than its child or we reached the
root.

For illustration, 35 is added as the right child of 80. Its value is compared with its
parent‘s value, and to be a max heap, parent‘s value greater than child‘s value is
satisfied, hence interchange as well as further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap
tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it requires
interchange. Next, 90 is compared with 80, another interchange takes place. Now, our
process stops here, as 90 is now in root node. The path on which these comparisons
and interchanges have taken places are shown by dashed line.

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)

{
//inserts the value in a[n] into the heap which is stored at a[1] to a[n-
1] int i, n;
i = n;
item = a[n];
while ((i > 1) and (a[i/2] < item) do
{

}
a[i] =
item ;
return
true ;

}

a[i] = a[i/2] ; // move the parent
down i = i/2 ;

Page 16 of 27

Example:

Form a heap using the above algorithm for the data: 40, 80, 35, 90, 45, 50, 70.

1. Insert 40:

2. Insert 80:

40

3. Insert 35:

4.

4

5. Insert 45:

90

80 35

40 45

6. Insert 50:

90
50

80 35 80 50

35

40 45 50 40 45 35

7. Insert 70:

90 90

70

80 50 80 70

50
40 45 35 70 40 45 35 50

80 40 80

80 40

80

40 35

Insert 90:

90

80 80
90

80 35

40 35

0

90 40

40

Page 17 of 27

Deletion of a node from heap tree:
Any node can be deleted from a heap tree. But from the application point of view,
deleting the root node has some special importance. The principle of deletion is as
follows:

• Read the root node into a temporary storage say, ITEM.

• Replace the root node by the last node in the heap tree. Then re-heap the
tree as stated below:
• Let newly modified root node be the current node. Compare its

value with the value of its two child. Let X be the child whose value
is the largest. Interchange the value of X with the value of the
current node.

• Make X as the current node.
• Continue re-heap, if the current node is not an empty node.

The algorithm for the above is as follows:

delmax (a, n, x)
// delete the maximum from the heap a[n] and store it in x
{

if (n = 0) then
{

write (―heap is
empty‖); return
false;

}
x = a[1]; a[1] = a[n];
adjust (a, 1, n-
1); return
true;

}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item =
a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;
// compare left and right child and let j be the

larger child if (item > a (j)) then break;
// a position for item is found

else a[j / 2] = a[j] // move the larger child up a level j = 2 *
j;

}
a [j / 2] = item;

}

Page 18 of 27

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 26
and this node with data 26 is removed from the tree. Next 26 at root node is compared
with its two child 45 and 63. As 63 is greater, they are interchanged.

Now, 26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are
interchanged. Now, 26 appears as the leave node, hence re-heap is completed.

De le t ing t he no de w it h data 99 Aft er De le t io n of no de w it h data 99

Merging two heap trees:

Consider two heap trees H1 and H2. Merging the tree H2 with H1 means to include all
the node from H2 to H1. H2 may be min heap or max heap and the resultant tree will
be min heap if H1 is min heap else it will be max heap. Merging operation consists of
two steps: Continue steps 1 and 2 while H2 is not empty:

1. Delete the root node, say x, from H2. Re-heap H2.

2. Insert the node x into H1 satisfying the property of H1.

96

93 67

80 92 13 19

38 59 45 92 Resultant max heap after merging H1 and H2

Application of heap tree:
They are two main applications of heap trees known are:

1. Sorting (Heap sort) and Priority queue implementation

26 63

99

26 57 63

45
45 57

26

35 29 57 42
35 29 26 42

27 12 24 26
27 12 24

92 13

59 67 19 80

38 45 92 93 96

H1:maxheap H2: min heap

+

Page 19 of 27

HEAP SORT:
A heap sort algorithm works by first organizing the data to be sorted into a special
type of binary tree called a heap. Any kind of data can be sorted either in ascending
order or in descending order using heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a. Remove the top most item (the largest) and replace it with the last

element in the heap.

b. Re-heapify the complete binary tree.

c. Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:
This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-
decreasing order. First transform the elements into a heap.

heapsort(a, n)
{

heapify(a, n);
for i = n to 2 by – 1 do
{

temp =
a[i]; a[i]

= a[1];

a[1] =

temp;

adjust (a, 1, i – 1);
}

}

heapify (a, n)
//Readjust the elements in a[n] to form a heap.
{

for i n/2 to 1 by – 1 do adjust (a, i, n);
}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to
form a single heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item =
a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j j + 1;
// compare left and right child and let j be the

larger child if (item > a (j)) then break;
// a position for item is found

else a[j / 2] = a[j] // move the larger child up a level j = 2 *

Page 20 of 27

j;

}
a [j / 2] = item;

}

Time Complexity:

Each ‗n‘ insertion operations takes O(log k), where ‘k‘ is the number of elements in the
heap at the time. Likewise, each of the ‘n‘ remove operations also runs in time O(log
k), where ‘k‘ is the number of elements in the heap at the time.

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst
case.

Thus, for ‘n‘ elements it takes O(n log n) time, so the priority queue sorting algorithm
runs in O(n log n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data
using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion op:

40 40

80 35 80 70

90 45 50 70 90 45 50 35

90
40

40 70
90 70

80 45 50 35
80 45 50 35

90

80 70

40 45 50 35

Page 21 of 27

Page 22 of 27

Program for Heap Sort:
void adjust(int i, int n, int a[])
{

int j, item;
j= 2 * i;
item = a[i];
while(j <= n)
{

if((j < n) && (a[j] < a[j+1]))
j++;

if(item >= a[j]) break;
else
{

a[j/2] = a[j];
j = 2*j;

}
}

a[j/2] = item;
}
void heapify(int n, int a[])
{

int i;
for(i = n/2; i > 0; i--)

adjust(i, n, a);
}
void heapsort(int n,int a[])
{

int temp, i;
heapify(n, a);
for(i = n; i > 0; i--)
{

}
}

void main()
{

temp = a[i];
a[i] = a[1];
a[1] = temp;
adjust(1, i - 1, a);

int i, n, a[20];
printf("\n How many element you want: ");
scanf("%d", &n);
printf("Enter %d elements: ", n);
for (i=1; i<=n; i++)

scanf("%d", &a[i]);
heapsort(n, a);
printf("\n The sorted elements are: \n");
for (i=1; i<=n; i++)

printf("%5d", a[i]);
}

Page 23 of 27

Merge Sort:

Merge sort is based on Divide and conquer method. It takes the list to be sorted and divide it
in half to create two unsorted lists. The two unsorted lists are then sorted and merged to get
a sorted list. The two unsorted lists are sorted by continually calling the merge-sort
algorithm; we eventually get a list of size 1 which is already sorted. The two lists of size 1 are
then merged.

Merge Sort Procedure:

This is a divide and conquer algorithm. This works as follows :

1. Divide the input which we have to sort into two parts in the middle. Call it the left
part and rightpart.

2. Sort each of them separately. Note that here sort does not mean to sort it using some
other method. We use the same function recursively.

3. Then merge the two sorted parts.

Input the total number of elements that are there in an array (number_of_elements). Input
the array (array[number_of_elements]). Then call the function MergeSort() to sort the input
array. MergeSort() function sorts the array in the range [left,right] i.e. from index left to
index right inclusive. Merge() function merges the two sorted parts. Sorted parts will be from
[left, mid] and [mid+1, right]. After merging output the sorted array.

MergeSort() function:

It takes the array, left-most and right-most index of the array to be sorted as arguments.
Middle index (mid) of the array is calculated as (left + right)/2. Check if (left<right) cause we
have to sort only when left<right because when left=right it is anyhow sorted. Sort the left
part by calling MergeSort() function again over the left part MergeSort(array,left,mid) and
the right part by recursive call of MergeSort function as MergeSort(array,mid + 1, right).
Lastly merge the two arrays using the Merge function.

Step-by-step example:

Page 24 of 27

Program:

#include <stdio.h>
#define max 10
int a[11] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44, 0 };
int b[10];
void merging(int low, int mid, int high)
{

int l1, l2, i;
for(l1 = low, l2 = mid + 1, i = low; l1 <= mid && l2 <= high; i++)
{

if(a[l1] <= a[l2])
b[i] = a[l1++];

else

}

b[i] = a[l2++];

while(l1 <= mid)
b[i++] = a[l1++];

while(l2 <= high)
b[i++] = a[l2++];

for(i = low; i <= high; i++)
a[i] = b[i];

}
void sort(int low, int high)
{

int mid;
if(low < high)

{

}
else
{

}

}

mid = (low + high) / 2;
sort(low, mid);
sort(mid+1, high);
merging(low, mid, high);

return;

int main()
{

int i;
printf("List before sorting\n");
for(i = 0; i <= max; i++)

printf("%d ", a[i]);
sort(0, max);
printf("\nList after sorting\n");
for(i = 0; i <= max; i++)

printf("%d ", a[i]);
}

Page 25 of 27

External Sorting

All the internal sorting algorithms require that the input fit into main memory. There are,

however, applications where the input is much too large to fit into memory. For those

external sorting algorithms, which are designed to handle very large inputs.

Why We Need New Algorithms

Most of the internal sorting algorithms take advantage of the fact that memory is directly

addressable. Shell sort compares elements a[i] and a[i - hk] in one time unit. Heap sort

compares elements a[i] and a[i * 2] in one time unit. Quicksort, with median-of-three

partitioning, requires comparing a[left], a[center], and a[right] in a constant number of time

units. If the input is on a tape, then all these operations lose their efficiency, since elements

on a tape can only be accessed sequentially. Even if the data is on a disk, there is still a

practical loss of efficiency because of the delay required to spin the disk and move the disk

head.

The time it takes to sort the input is certain to be insignificant compared to the time to read

the input, even though sorting is an O(n log n) operation and reading the input is only O(n).

Model for External Sorting

The wide variety of mass storage devices makes external sorting much more device

dependent than internal sorting. The algorithms that we will consider work on tapes, which

are probably the most restrictive storage medium. Since access to an element on tape is

done by winding the tape to the correct location, tapes can be efficiently accessed only in

sequential order (in either direction).

We will assume that we have at least three tape drives to perform the sorting. We need two

drives to do an efficient sort; the third drive simplifies matters. If only one tape drive is

present, then we are in trouble: any algorithm will require O(n2) tape accesses.

The Simple Algorithm

The basic external sorting algorithm uses the merge routine from merge sort. Suppose we

have four tapes, Ta1, Ta2, Tb1, Tb2, which are two input and two output tapes. Depending

on the point in the algorithm, the a and b tapes are either input tapes or output tapes.

Suppose the data is initially on Ta1. Suppose further that the internal memory can hold (and

sort) m records at a time. A natural first step is to read m records at a time from the input

tape, sort the records internally, and then write the sorted records alternately to Tb1 and

Tb2. We will call each set of sorted records a run. When this is done, we rewind all the tapes.

Phase1: Divide the file into blocks of size m and sorting of blocks, store on output tapes.

Phase2: Merging of Runs

Page 26 of 27

Consider the example:

If m = 3, then after the runs are constructed, the tapes will contain the data

indicated in the following figure.

Now Tb1 and Tb2 contain a group of runs. We take the first run from each tape and

merge them, writing the result, which is a run twice as long, onto Ta1. Then we take the

next run from each tape, merge these, and write the result to Ta2. We continue this

process, alternating between Ta1 and Ta2, until either Tb1 or Tb2 is empty. At this point

either both are empty or there is one run left. In the latter case, we copy this run to the

appropriate tape. We rewind all four tapes, and repeat the same steps, this time using the

a tapes as input and the b tapes as output. This will give runs of 4m. We continue the

process until we get one run of length n.

This algorithm will require log(n/m) passes, plus the initial run-constructing pass.

For instance, if we have 10 million records of 128 bytes each, and four megabytes of

internal memory, then the first pass will create 320 runs. We would then need nine more

passes to complete the sort. Our example requires log 13/3 = 3 more passes, which are

shown in the following figure.

Page 27 of 27

Multiway Merge

If we have extra tapes, then we can expect to reduce the number of passes required

to sort our input. We do this by extending the basic (two-way) merge to a k-way merge.

Merging two runs is done by winding each input tape to the beginning of each run.

Then the smaller element is found, placed on an output tape, and the appropriate input

tape is advanced. If there are k input tapes, this strategy works the same way, the only

difference being that it is slightly more complicated to find the smallest of the k elements.

We can find the smallest of these elements by using a priority queue. To obtain the next

element to write on the output tape, we perform a delete_min operation. The

appropriate input tape is advanced, and if the run on the input tape is not yet completed,

we insert the new element into the priority queue. Using the same example as before, we

distribute the input onto the three tapes.

We then need two more passes of three-way merging to complete the sort.

After the initial run construction phase, the number of passes required using k-way

merging is logk(n/m) , because the runs get k times as large in each pass. For the example

above, the formula is verified, since log3 13/3 = 2. If we have 10 tapes, then k = 5, and our

large example from the previous section would require log5 320 = 4 passes.

	UNIT-4
	GRAPHS
	Basic Concepts:
	Operations on Graphs:
	Graph Storage Structure:
	Adjacency Matrix:
	Adjacency list:

	Traverse graph:
	Depth – First Traversal:

	Algorithms:
	Depth – First Search:
	Breadth-First Search:

	SORTING
	Quick Sort:
	Example:
	Algorithm
	Heap and Heap Sort:
	Max and Min Heap data structures:
	Representation of Heap Tree:
	Operations on heap tree:
	Insertion into a heap tree:
	Example: (1)
	Deletion of a node from heap tree:
	delmax (a, n, x)
	adjust (a, i, n)
	Merging two heap trees:
	Application of heap tree:
	HEAP SORT:
	Algorithm:
	heapsort(a, n)
	heapify (a, n)
	adjust (a, i, n) (1)
	}
	Example 1:
	Solution:
	Program for Heap Sort:

	Merge Sort:
	Merge Sort Procedure:
	MergeSort() function:
	Step-by-step example:

	External Sorting
	Why We Need New Algorithms
	Model for External Sorting
	The Simple Algorithm

